Blackcurrant breeding at JHI – where we are now and what's coming next

Rex M. Brennan, Sandra Gordon and Dorota Jarret

The James Hutton Institute

International Blackcurrant Association conference, Poland June 2014

Plan

Progress to date

Existing varieties and the commercial landscape in the UK

New challenges

Breeding objectives and how they have changed

- Trial lines
 - The next raft of varieties for the processing and fresh markets
- Molecular breeding strategies
 - Genome sequencing
 - Marker-assisted selection

JHI/MRS *Ribes* breeding

- Breeding at SCRI from 1960s
- GSK funding since 1990
 - Contracted until 2015
- First release Ben Lomond (1974)
- Subsequent releases (all Bens) increasingly successful commercially
 - Ben varieties now account for 99% UK production, ca. 50% global
- Emphasis on quality for processing, reflecting the funding source for the breeding programme
- Very wide genetic base variety and species collection maintained as part of Scottish Government Underpinning capacities programme
- New varieties **must** combine quality with agronomic performance

More varieties produced

1986

 Ca. 4 main varieties, Baldwin is widest-grown

2000

 Ca. 5 main varieties, Ben Lomond is most popular

2004

 Ca. 6 main varieties, Ben Alder is most popular

2009

- Ca. 10 main varieties, Ben Hope is most popular
- 2014
- Ca. 10 main varieties, Ben Hope is most popular (just)

Varieties – past and present

`Baldwin' - > 100 years old, mainstay of UK blackcurrant industry up to l980s

'Ben Lomond' – released from SCRI 1974, most popular variety in 1980s – early 90s

'Ben Starav' – released 2008

The new standards.....

- Ben Starav (Ben Alder x ([E29/1 x (93/20 x S100/7)] x [ND21/12 x 155/9])
 - Consistently high yields (mean <u>10.07 t/ha</u> in trials), medium berries, low-medium chilling reqt., high Brix and juice yield, very high anthocyanin content

 High yields (mean <u>10.2 t/ha</u> in trials), medium berry size, good growth habit, moderate/high chilling reqt., high vitamin C and anthocyanin content

Blackcurrant Breeding Objectives

Fruit quality

- High Brix/acid ratio
- Low total acidity
- Anthocyanins
 - Delphinidins preferentially selected
- Vitamin C (AsA)
 - > 140 mg/100 ml
 - Sensory traits
- Berry size

Agronomic

- Environmental resilience
 - Winter chill levels
 - < 2000 h/7.2°C
- Pest resistance for low-input growing
- Acceptable crop yield
 - > 6 t/ha
 - Juice yield also quantified

Attributes Ranking 2012

Top 5 attributes for new variety selection are quality-related

From GSK Breeder's Guidelines

- Flavour is top criterion
 - Potential cultivars all screened at processor
 - + Some rejected as poor, or different to other 'Ribena' varieties
 - Better screening for flavour needed at early stages

• Yield/regularity of cropping is top agronomic trait

Pest and disease resistance has lower priority

Breeding Programme Design

- Identification of best parents
 - Combination of best quality traits and superior agronomic performance
 - Database development
- Identification of areas requiring improvement
 - Sources of characters to be improved identified within database
 - Knowledge of heritability of traits essential
 - » Eg. anthocyanins strong maternal influences
- Development of crossing schedule
 - Ca. 100 crosses every 2 years
 - Spread of cropping seasons

Plant resources within blackcurrant breeding programme

- Blackcurrant seedlings (unselected, Stage 1)
 - + >10k
- Blackcurrant single plant selections (Stage 2)
 - > 2000 including dedicated mite-resistant plot of
 > 500 selections
- Blackcurrant 5-plant selections (Stage 3)
 - + >400
- Trial lines
- + > 40 including 9 mite-resistant
- *Ribes* germplasm collection
 - Species, old varieties etc.
 - New genotyping techniques developed in *Ribes* have potential application in identifying useful traits within germplasm collection

- ~ 100 crosses made bi-annually
- ~ 500 selections evaluated annually
- 10 new lines selected for trials

Ranking

1

. .

6	6 not complying with AsA												
5	Yellow	High AsA (>145)											
4	Green	High AsA + High Brix (>13.5)											
3	Blue	High AsA + High Brix + Brown index (< 0.38)											
2	Red	High AsA + High Brix + Brown index (< 0.38)+ Blue index (>0.15)											
1	Purple	High AsA + High Brix + Brown index (<0.38)+ Blue index (>0.15) + field scores											

		Selectio	A	Hanes		1.5	1.12	112	400	1.00		luice	1.11	A04		
1.	Colour * Champic * Elec		Parent * Parent 2						1412 *			weigt *:	the local sector is a sector of	mg/500vi #		
	1 (30		Ben Hope 8175-5		M/L	-339	116				107	1 222	1,0679			
2	1.08	於-林-27		10 B M		250		1942			184		1.06833			
12	1 630	999-2	927-6 927-6		M	250	155	122.6		2.75	12		1,0199	210		
12	3 830	9996-5	817-6 8829-18		M	-30		943			287		1.0506			
12	2.04	05-20-86		28-94		250	348.5	317.3	7)曹	2.41	24.7		1.0402	194		
	2 814	15-34-00-		26.34)	100		(-32.9		2.81	57		1.0676			
32	2 640	9559-6			MA	150					- 15.5		1.0476			
41	2.07	9985-5. 20-25-7		THE REAL PROPERTY.		063		95		2.88	17.8		1.0748			
88 96	3.08	00-15-12		20-34		150		107.9	/ 透		11.8		1.0415	1 13		
10	5 630	00-17-29		1000	MA	107		1255			144		1.0627			
-		00-53-30			MIL	30		1223			25.5		1.0442			
51	5 620	00-58-7			M	200					222		1.0605			
381	9 030 3 013	95-54-33		10-Aug		- 50	(<u>17</u>	125 137			24.0		1,0503			
1	124	15-20-44		25-34		- 350	294 544	423			-14		1008		0.284	
11	104	05-50-05		Xen		150	IN IN	184			151		1.0014		0.258	0.758
54	3 411*	06-34-01		10-Aug		100	254	172.9			10.0		10738		0.294	0.828
125	3 111	06-28-08		21-44		- 100	462	86.8			147		1004	377	6307	0 108
326	0 611	04-18-02		22-M		150		99.4			24.6		1.0182		0.326	6.752
127	5 833	06-18-04		23-34		250	3 (400)	417.3			1		1.015		0.278	0.801
124	3 821	04-19-01		23-34		:30		128.8			3.5		1.0638		0.248	0.785
5.0	3 233	06-15-02		20.00		36	462	348			245		1.0942		0.308	6.855
	5 611	04-14-02		25-34		100	275	245.2		2.84	- 117		1000		0.300	0.578
16	100	06-35-03		24		350	100	520.1			13		LOUIS		0.27	6.178
1481	1 020	H03-1		10 Mar 10	W.	-150		87.6			14.3		1.0462		0.388	6.953
1	10	W718-5		27-34		150	10	145.1			1.33.8				6.314	D.BAG
12	a \$20	HELD-4		100	M.	100		- (96A			25.4		1.000		0.204	0.807
14	1 CR	9565-12		25-34	7	150		218.6			544				0.228	0.615
158	3 830	9913-5		100	M	150		135.6			123.9		1 05.75		0.257	0.866
180	3 830	9922-0			M.	30	252	137.1			1		1.0462		0.349	1.043
181	3.63	9629-5		25 au		24	- *	348		2.48	10.15		1.0612		0.243	0.81
582	3 (22	10445-3			MA	250	10	306.1			- 25.0		1,064	174	0.304	0.582
145	163	MM4-T		22-34		130		336.9			347		1.1944	240	0.287	2.654
178	4.08	00-04-24		27-44		200		329.7			141	COMM.			0.271	0.641
199	5 (6	00-00-7		20-34		250		184.5			33.7	28.08			0.301	0.776
201	5.01	00-18-18		20-54		150		125			18.1	24.24			0.145	0.403
200	5 630	06.32.0				150		95			12.8		1 0562	320	0.355	0.978
205	3.08	00.17-37	8814-2 8992-11	27-Jul		250		24.7	- 43		112				0.405	1.068
295	5.05	00-38-2	2018 (SSI2)	20.041		250		380.3	3 (1		111	35.26			6.307	0.767
207	5.08	00-34-62		27-04		350		150.6	- 95		125		LONICH		0.945	0.993
215	5.08	80.47-8		20-34		150		10.1			12.7		1.05467		0.38	0.758
254	5 611	06-17-01	10121-1 01120-1	25-64		350		90.7			11.2		1.0536		0.000	0.621
215	5 111	06-18-08	access and a second at	25-Jul		350		300.7			12.3		3.0482		0.32	0.435
225	5.08	Middle-1		25-14		150		119.3			12.3		1.0490		6.367	1.049
324	50	842-54		20-24		350		185.3			12.9	26.27	1.05540		0.334	0.829
	* # Bary 2008 have			10.00												

С	onsist	enc	y of a	quali	ty											のできた	金融					となく		The Ja Hutt	ton	
	Residing within		Selectionicu	1 1000		Field	108577	100 h/w	Juice	ag	5155	Spec	AsA mg/100m	Brown	81e	ant.	-35	25		2				1.7.0		1
2008	the year	ENIT PO.	00-35-16	Paren	7a	\$50/8	1/1/13	118.3	yord. BS	8H 2	514	Q1 MI	244	0.570	17des		an et	See.		D	1	1		Vent	Overall	1
2010	3	812	00-25-16	8855-2	8999-8	11.5	1.11	127.7	82	2.72	15	-1.066	152	0.354	163341					-	10	27		-		1
2011	1	CB	00-25-96		-	7+	. 6	00.4	0.94	2.75	15	1.0824	201.8	9.368	0.767	I LINE	Page	1	Sec.	10		Market	10	7	70.0	-
		_			_						_	_			1		-	-	. 11	1		100		-	÷ .	-
	Ranking within		Selection/Cu			Field -		100 6/44	Autor				A(A mg/200m	Brown	Die	See.	100	1	2		-	1				
	The year	but no.	- INV	Pater	es .	ACOTE	8/14/4	640	yield	pH.	drix.	toec grav	1.0500	index	Index	100		100	En-		-	<u>M.</u>	Mage:	New	Overall	1
2006	1	CB	9839-4 9639-4	\$36-3-73	8.76+67	+		188.9	87	2.16	16.3	10628	245.4	0350	0.150	3	6	8./		OLM	0	- 5		7	7	
1000		112	010000000		_		1	1	1	1.1.1.1.1.1.1	1111111	all starts	119.07	-	4-14-14		Walter Wa	1 1		Constitute	1912		1000	-	- 11.	
-		-	1						in the second	-	-	-	.44	1			-	-		-		-	-	1	1	1
	Banking within	22133	Selectioncu	11284		Field	The second	\$00.by%#	Juice.	6477	0201	20280	mg/S00m	Brown	five	126332	:0:43	125.01	2383	1975	252.5	19853	12022	102235	1000	car
2009	the year	Expt no.	8-2/ 958-4	Raten	dis l	30048	E/M/L	915	yield 82	2.65	5rts 29.5	Spiec grass	254	0.366	0165	Crop	Mab/C	Berry	branch	Pesti	Mideu	Strigs	Height	Vigour	Overall	÷
2010	S TION BAINS	CB.	998-4	817-4	\$828-18		M/L	128.5	89	3.06	- 13-	1.0571	349	0.407	0.159		- F.	7	1	LMS	0	1	- 5	4	7	
2011	- 3	C8	596.4		-	_ t _	M/L	97.3	12	-264	18.3	1.0765	2019	\$345	0.158	100	1.0	- 5	7.7	UMS	0	6		4	7	Int
												_					_			_		_		_		-
	Ranking within		Selectionicu			Fierd		100 b/w	NICE			Spec	AA mg/100m	Brown	nie .									1		
	the year	but ro.	Buse	Patent	ets .	BCORE	E/M/L	64	yard	211	deta.	- DLAN	1	Index.	Index	E/op	Habit	denty	Branch	Pests	M-Sdevir	Strips.	Hight	Vigour	Overall	1
2009	1	610	999-1			_	- 50	116.7	90	3.08	16.4	1.20	567	0.366	0.154								1000			F
2009		610	\$995-1 \$995-1	917-4	917-4	Te'	M	524.9	80	-2.85	185	1.0599	170	0.371	0.154	19.5	T		7	LAIS	0	- A	191	+	84	+
2050	6 (Leve AGA)	C8	999-1			8+		332.8	82	2.95	15.3	1.0619	138	0.924	0.130		-	-	-	-					-	F
2011	31-blue index)	CB	998-1		-		in Ar	95.4	91	276	157	1.0758	170.8	9 350	0,128		All and a second se		100	0	0	100	1042734	1000 000	3.0	-
		-	-			-				_	_	-	22	_	-		_				-	-	_	-		-
	Banking within.		Selection/cu			Field	1	100 b/wi	Arice.			Spec	AA #g/100H	train	6.0						1			1		
-	the year	Eigt no.	liter	Paren	6	acces.	1.44/1	(a)	yield	- 194	. 814	- grav	1	index	index.	Crop.	Habit	Berry	dranch.	Pesta.	Midew	West.	neight	Vigiter	Ownell	-
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110	9996-1	817-4	and.	-		95.3	8.8	2.84	367	10.000	209	5,327	0.292	-	_		-	1224	100			4	-	+
2009	181	110	2224.1		100000	7.4		242.8		and the second second				COLUMN T								1.12				
2010	3 (-Eliar Index)	111	9998-1	817-4	8825-18	34	M	143.8 111.7	88	137	14	LOSSE	349	0.366	0.165				0	UMM 1	0		0	0	76	T

Winter chilling and climate change

- Potentially major limiting factor for blackcurrant production in some areas
- Differences in chill requirement identified, models developed (but need to be refined)
- Collaboration with Plant and Food NZ
 - Mapping population in 2 locations, correlation of post-chill responses
- Identification of genes/genetic regions
 that control differences in climate
 response

Ongoing work on climate effects

- 2012-3 and 2013-4 we have been harvesting shoots from field at weekly/biweekly intervals to see if we can fit models to actual data
 - 4 cvs. (2 high chill, 2 low chill)
- Accompanied by bud samples for microarray/gene expression analysis
 - Alignment of gene expression with bud dormancy and development
- 2012/13 Continuously cold so little discriminatory power
- 2013/14 Lowest levels of chill in over 20 years

New release – 9521-2 (prov. Ben Lawers)

- Early-mid (Lomond) season
 - after Ben Vane but before Ben Starav, at a time of potentially low fruit supply
- Typical yields 7 8 tonnes per hectare
- Not fully resistant to gall mite, but slow to become infected in a high pressure field situation
- Very low susceptibility to Botrytis
- Averaged Brix levels of 16.6 (though has been as high as 18.9)
- High levels of AsA
- Good flavour
 - `Fresh fruity blackcurrant'
- Low chilling requirement
- Exclusive to contract growers

- JHI 9918-3 (GSK 2008-6)
- Ben Hope x JHI 91130-1
- Mite resistant
- Mid-season
- Upright growth habit

AsA > 200 mg/100 ml

JHI 9998-2 (GSK 2010-14)

- JHI 917-4 x 8828-18
- Early ripening, similar to Ben Vane
- Brix 15.8
- High yields of large berries (> 1g)

JHI 00-37-29 (GSK 2010-17)

- Ben Klibreck x JHI 8992-11
- Late season, possible Ben Tirran replacement
- AsA > 230 mg/100ml, Acy > 1, Brix > 16
- Berries > 1g

JHI 9918-1 (GSK 2008-6)

- JHI 91130-1 x Ben Hope
- Good yields
- Mid-late season, potential Ben Klibreck replacement
- AsA > 230 mg/100 ml
- Gall mite-resistant

JHI 00-54-21

- Ben Hope x JHI 8837-11
- Late season
- Large berries
- ASA > 180 mg/100 ml

JHI 00-54-30

- Sister of 00-54-30
- Late season
- Avge berry size 1.23 g
- AsA > 190 mg/100 ml, better colour

JHI 92105-13

- JHI \$36/2/21 x B1834
- Early-mid season
- Gall mite-resistant
- Sl. spreading habit
- AsA > 220 mg/100 ml, high colour

JHI 92127-1

- JHI S36/3/51 x B1834
- Early-mid season
- Upright with strong branches
- Consistent cropping
- V high colour, AsA > 160 mg/100 ml

Ben Finlay

- (JHI P10/9/13 x Ben Alder) x
 EMR B1834
- Gall mite-resistant
- Early-mid season
- AsA > 240 mg/100 ml
- High anthocyanins
- Registered for EU Rights

Fresh Market Types

- JHI P8-5-24
- Berry size 1.29g
- Brix 13.9
- Green strig colour, storage at 4C quite good

Ben Maia

- Berry size < 1g, strong green strigs</p>
- Brix > 14

Fresh Market Types

JHI 01-33-1

- V large berries (avge. 1.42g)
- Good storage potential at 4C
- Brix avge. 16.48, has been up to 18

JHI 00-50-1

- Large berries (avge. 1.28g)
- Green strigs, outstanding storage potential
- Brix avge. 14.54

Selecting for berry size

- Key trait for fresh and processing markets
- SNP markers associated with large berries identified
- Validation of markers on diverse breeding populations is in progress as part of EUBerry project
 - Joint work with InHort Poland
 - Phenotype data from 2014 harvest will be used to confirm effectiveness of markers
 - Other putative markers available

Future prospects

- Range of new mite-resistant varieties with enhanced juice quality
- Better understanding of environmental effects on fruit quality and cropping
- More markers in the breeding programme
 - Berry size by end of 2014
 - Anthocyanins by end 2015
- Variety selection more closely linked to specific products

Ribes genomic resources

- Genotyping by sequencing (GBS)
 - 1.58k new SNP markers identified
 - Map length increased by 33% to 780.7 cM
 - Model for mapping and identifying SNPs in crop species lacking reference genome
 - Further GBS in progress on NZ Dorain x Sefton population
- Shotgun sequencing of *Ribes* genome in progress
 - 50x MiSeq coverage

Russell, J., Hackett, C., Hedley, P., Liu, H., Milne, L., Bayer, M., Marshall, D., Jorgensen, L., Gordon, S. and **Brennan, R.** (2013). The use of Genotyping by Sequencing in blackcurrant (*Ribes nigrum*) - developing high-resolution linkage maps in species without reference genome sequences. *Molecular Breeding* DOI 10.1007/s11032-013-9996-8

Future challenges and opportunities

- Move towards sustainable cropping
 - Climate change effects
 - Poor budbreak
 - + Frost damage
 - Reduced pesticide inputs (IPDM systems)
 - Emerging pest and disease problems, eg.
 Phomopsis, winter moth
- Molecular breeding offers increased efficiency and resilience within the programme for many of the traits of interest
- The JHI/MRS breeding programme is able to combine underpinning science and wide genetic resources with commercially-facing varietal production

Acknowledgements

Breeding Sandra Gordon Dorota Jarret Underpinning JHI science support Rob Hancock Joanne Russell Linzi Jorgensen Pete Hedley

Commercial support LR Suntory Rob Saunders James Wickham

Winterwood Farms Steve Taylor Alan Reeves

ADAS John Atwood

UK contract growers

Overseas collaborators Plant and Food NZ Alastair Currie Cath Snelling

InHort Poland Stan Pluta Bogusia Badek

BBC `Harvest', August 2013 BBC

The James Hutton Institute