



## Achievements in breeding of new cultivars and agronomical practices in blackcurrants in Poland







**Dr. Stan Pluta**Research Institute of Horticulture in Skierniewice, Poland

*Dr. Piotr Baryla*University of Life Science in Lublin, Poland

5<sup>th.</sup> IBA Conference, Ashford, UK, 14-16 June, 2016

The Blackurrant Breeding is conducted at the Department of Breeding of Horticultural Crops of the Research Institute of Horticulture (INHORT) in Skierniewice, Central Poland.

- high plastic tunnel and field cultivar collection at the Pomological Orchard in Skierniewice
- glasshouse
- selection fields at the Experimental Orchard at Dąbrowice, Skierniewice







#### Organization of Department of Breeding of Horticultural Crops

(3 laboratories) – since, 2 April, 2015

# DEPARTMENT OF BREEDING OF HORTICULTURAL CROPS

1. Fruit Genetics and Breeding Lab.

(5 research workers)

2. Unconventional Breeding Method Lab.

(5 research workers)

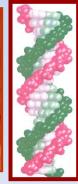
3. Genetics and Breeding of Vegetable Crops (6 research workers)

## BLACKCURRANT BREEDING PROGRAM (2 Laboratories)

- 1. Fruit Genetics and Breeding Lab.
  - genetic and methodological studies,
  - releasing of new cultivars










- 2. Unconventional Breeding
  Method Lab.
  (Biotechnology)
  - molecular studies(NOT GMO !!!)







#### Fruit Genetics and Breeding Lab. of INHORT



**Dr. Stanislaw Pluta** – **blackcurrant, gooseberry** (*Ribes sp.*) and hig-bush blueberry (*Vaccinium*)

1986 -2016

#### **NEW CULTIVARS SUITABLE FOR:**

- 75% for processing and freezing (machine harvest),
- 25% dessert fresh market (hand picked)















#### **Conventional Breeding**



Crossing programs are mainly done under cover (high-plastic tunnel)

- Classical, hybridization breeding methods
- 1. Crossing of selected parental forms (according to DNA polyphormism, phenotypic evaluation in the collection and genetic studies
- 2. Evaluation of F<sub>1</sub> seedling progenies
- 3. Selection of breeding material (best individual are selected) and propagated
- 4. Further evaluation and selecting of best clones

#### Hybridization — traditional cross combination







#### **Blackcurrant**

(Ribes nigrum L.):

'Foxendown', 'Ceres', 'Tiben', 'Ores', 'Gofert' and others

#### **Blackcurrant**

(Ribes nigrum L.):

'Ben Gairn', 'Ben Hope', 'Foxendown' 'Ceres', 'Ruben' and others

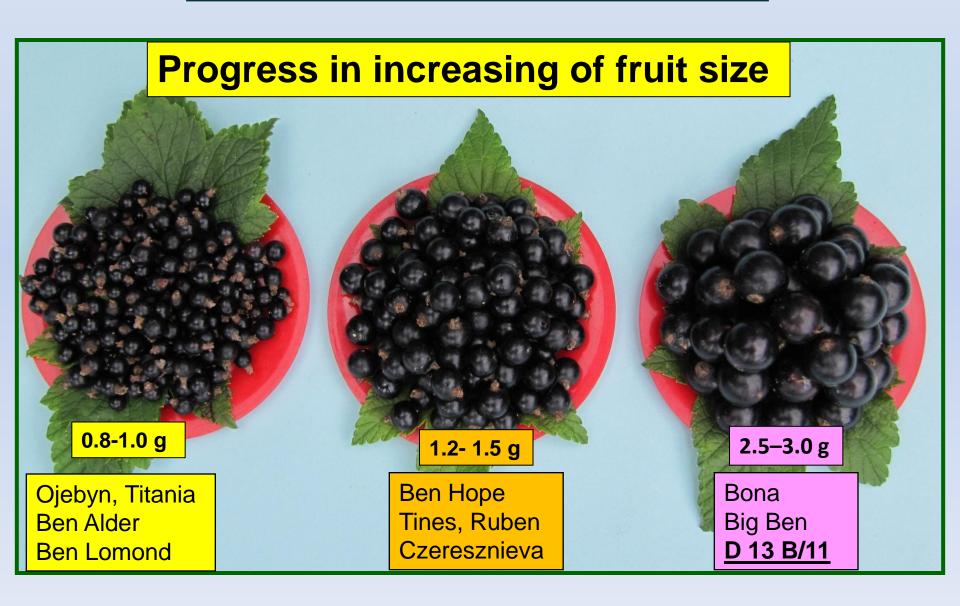
## Production of seedlings in the glasshouse January 30 – April 15/30



#### Aims and breeding efforts

Breeding for resistance

Breeding for fruit quality


Good adaptation

to main pests and diseases

and suitability for processing and freezing as well as fresh market to local environmental conditions (winter hardiness, spring frost tolerance, chilling requirements and machine fruit harvest).

#### **Blackcurrant Breeding**

- Desert cultivars for Fresh Market



## Achievements – new cultivars released 1986-2016

| LP. | CULTIVAR  | Year of registration | Share in production in Poland (%) |                     |
|-----|-----------|----------------------|-----------------------------------|---------------------|
| 1   | TISEL     | 2000                 | 50                                |                     |
| 2   | TIBEN     | 2000                 | 12                                |                     |
| 3   | ORES      | 2005                 | 4                                 |                     |
| 4   | TINES     | 2005                 | 2                                 | 04 5                |
| 5   | RUBEN     | 2005                 | 8                                 | <del>=</del> = 81,5 |
| 6   | GOFERT    | 2010                 | 4                                 |                     |
| 7   | POLARES   | 2014                 | 1.0                               |                     |
| 8   | TIHOPE    | 2014                 | 0.5                               |                     |
| 9   | POLBEN *  | 2017/18              | -                                 |                     |
| 10  | POLONUS * | 2017/18              | -                                 |                     |

#### **ACHIEVEMENTS**

## Blackcurrant cultivars released and register into the National List of Cultivars and Plant Breeding Rights (PBR)

2000





**2005** 







Cultivars are also protected by the PBR on territory of UE till 2025-2030

## NEW Blackcurrant cultivars released and register into the National List of Cultivars and Plant Breeding Rights (PBR)

**2010** 















These cultivars are also protected by the PBR on territory of UE till 2025-2030



#### RESEARCH INSTITUTE OF HORTICULTURE

#### MAIN TRAITS OF NEW BLACKCURRANT CULTIVARS

- > High productivity
- Resitance/low susceptibility to pests and diseases
- Good fruit quality and suitability for processing, freezing and fresh market
- Adaptability for cultivation in Polish weather and soil conditions
- Suitability to modern technology of fruit production



#### RESEARCH INSTITUTE OF HORTICULTURE

#### **Promotion**







## NEW BLACKCURRANT CULTIVARS SUBMITED FOR PBR in CANADA and PLANT PATENT in the USA - 2014

#### 'GOFERT', 'POLARES' and 'TIHOPE'

- Canadian Food Inspection Agency, Ottawa, Ontario, Canada
- US Patent & Trademark Office, Alexandria, Virginia, USA







#### RESEARCH INSTITUTE OF HORTICULTURE

|             | Number of granted |  |  |  |  |
|-------------|-------------------|--|--|--|--|
| CULTIVAR    | licenses          |  |  |  |  |
|             | in 2011 - 2015    |  |  |  |  |
| BLACKURRANT |                   |  |  |  |  |
| 'GOFERT'    | 11                |  |  |  |  |
| POLARES'    | 7                 |  |  |  |  |
| 'TIHOPE' '  | 8                 |  |  |  |  |









#### RESEARCH INSTITUTE OF HORTICULTURE

#### SUMMARY

We are convinced that the new cultivars will be:

An important carrier of biological progress of blackcurrant production in Poland

Contribute to maintaining of high position of Polish blackcurrant production

Foster its competitiveness, while maintaining plant protection requirements of the environment and principles of safe food production

#### Biostimulation – agronomical factor

#### **MATERIALS and METHODS**

- > Studies 2014 & 2015
- Commercial plantation in Eastern Poland
- > cv. 'Tisel' area of 2 ha (1 ha biostimulation, 1 ha control)
- 3-year-old plants tested
- > Two biostimulated fertilizers (Timac Agro) were applied:

a/ Fertiactyl

b/ Fertileader

**Control** - fertilizers of similar composition, but without the biostimulation (commercially available on the Polish market)

#### Aims of studies:

- 1. Increasing of the fruit yield potential Productivity
- 2. Improving of the fruit quality Processing parameters

### FERTIACTYL® — innovative start-up fertiliser

1. Humic and fulvic acids

They facilitate accessibility and assimilability of nutrients

2. Glycine Betaine



Anti-stress action
Photosynthesis intensification

3. Zeatin

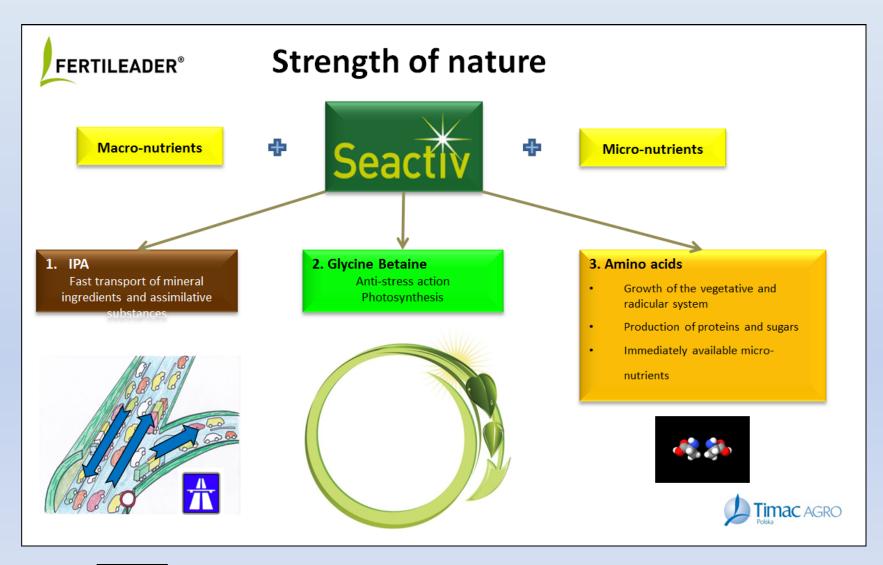


Radicular system growth Chlorophyll aging delay

4. Nutrients

- 13% nitrogen
- 5% phosphorus
- 8% potassium




Growth - vigour
Ripenning - Quality

















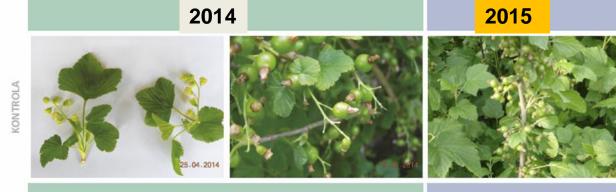






First biostimulation - complex Fertiactyl ® Starter




Second biostymulation - complex Seactiv ® (Fertileader LEOS, Fertileader GOLD BMo)





# 1.06.2015

#### **RESULTS**



Control



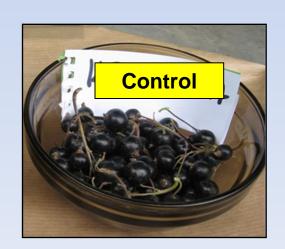






1.06.2015

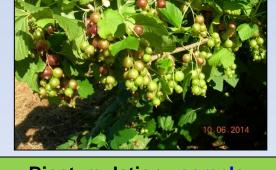





Biostymulation - complex SEACTIV ® (Ferdileader AXIS, Fertileader VITAL-954)

Effect of biostimuleted fertilizers on the flowering, fruit set and yield of blackcurrant cultivar 'Tisel'

| TRAITS                       | Biostimulation (Timac Agro) |       | Control |       |
|------------------------------|-----------------------------|-------|---------|-------|
|                              | 2014                        | 2015  | 2014    | 2015  |
| No. of cluster on the shoots | 29.4                        | 42.5  | 27.1    | 35.0  |
| No of flowers per cluster    | 7.3                         | 7,1   | 7.6     | 6.9   |
| Fruit set (%)                | 83.0                        | 77.5  | 86.1    | 77.8  |
| Weight of 100 berries (g)    | 133.1                       | 131.7 | 122.5   | 121.0 |
| Fruit yield (kg/bush)        | 2.51                        | 3.52  | 2.08    | 2.94  |
| Fruit yield (t/ha)           | 12.5                        | 17.6  | 10.4    | 14.7  |






#### Effect of biostimuled fertilizers on fruit quality of blackcurrant cv. 'Tisel'

| TRAITS            | Biostimulation (Timac Agro) |      | Control |      |  |  |  |  |
|-------------------|-----------------------------|------|---------|------|--|--|--|--|
| IKAIIS            | 2014                        | 2015 | 2014    | 2015 |  |  |  |  |
| Harvesting        |                             |      |         |      |  |  |  |  |
| Extract, °Brix    | 15.8                        | 17.4 | 14.5    | 16.0 |  |  |  |  |
| Fruit firmness, N | 3.30                        | 5.26 | 2.25    | 4.63 |  |  |  |  |
| After 7 days      |                             |      |         |      |  |  |  |  |
| Extract, °Brix    | 14.7                        | 16.0 | 13.3    | 14.8 |  |  |  |  |
| Fruit firmness, N | 3.18                        | 3.45 | -       | 2.71 |  |  |  |  |







**CONTROL** 

Biostymulation - complex SEACTIV ® (Fertileader ELITE)

**Harvesting 11.07.2015** 

#### **Summary:**

## Complex biostimulative program had a significant impact on yield potential and fruit quality:

- ✓ larger no of strigs on shoot (in the 2<sup>nd.</sup> year an increase of 21.4%),
- ✓ larger fruit size (weight) (2014 8.65%; 2015 8.84%),
- ✓ increase of fruit yield by 0.5 kg/bush (an average over 2 years),
- ✓ bigger total fruit yield an average of more than 19% over two years, (differences 2.1 t/ha in 2014, and 2.8 t/ha in 2015)
- ✓ increase of extract °Brix (8.5%) and fruit firmness.
- ✓ <u>in control</u> fruits fermented faster (sugar content decreased)
  and consequently, fruit firmness was reduced either.

#### New implementations - blackcurrant cv. 'Jubilejnaja Kopania' (2015)







26.03.2015



25.05.2015 15.06.2015 15.07.2015

## THANK YOU FOR YOUR ATTENTION