Breeding blackcurrant varieties new tools and directions

Rex Brennan James Hutton Institute

Plan

- Where we started...
- Breeding programme structure and timescales
- Gall mite resistance
- Anthocyanin content
- Environmental resilience
- Tools and resources
- Future thoughts

Back to the past...

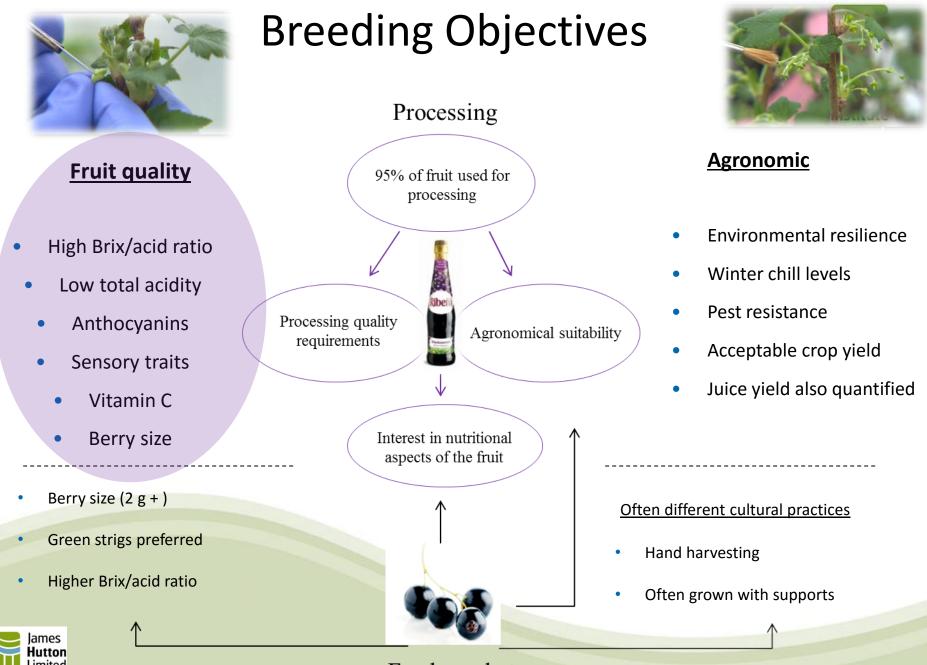
- 30 years ago
 - 2-3 commercial vars.
 - Ben Lomond, Baldwin
 - No commercially-funded breeding
 - Objectives almost entirely agronomic
 - Frost resistance
 - Yield
 - No fresh market for blackcurrants
 - Limited underpinning science

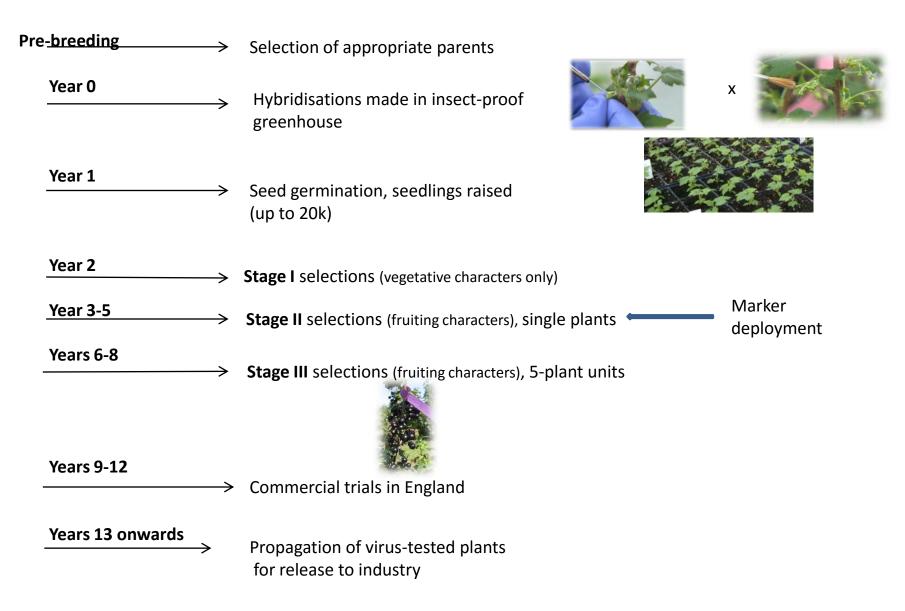
 Mechanisms of frost resistance
 - Biggest UK problems frost damage at flowering time and gall mite

JHI Group blackcurrant breeding

- Breeding at SCRI from 1960s
- Commercially funded since 1990

SmithKline Beecham


- First release Ben Lomond (1974)
 - Frost tolerance was the main objective initially
- Subsequent releases increasingly successful commercially
- Very wide *potential* genetic base cv. and species collection
- Extensive genomic resources developed at JHI
 - Linkage maps, outline genome sequence



Fresh market

Impact through Science

Breeding timescales

Gall mite resistance 1

- Resistant backcross material based on *Ce* gene from gooseberry
 - Single gene, complex introgression into blackcurrant
- Up to BC₉₋₁₀ to restore processing quality and agronomic performance
 - Emerging linkage between *Ce* and berry size, also low anthocyanins and frost susceptibility

 Selection for resistance up to 2010 based on infestation plot data

Gall mite resistance 2

- Molecular marker linked to *Ce* resistance gene developed in 2010
- Whole progenies screened for resistance using marker
 - crosses made with *Ce*-containing parent
 - usually combined with high quality large fruited type
 - prioritisation of objectives
- Field plantings of resistant material
 - entire plots of resistant material now available at JHI
 - resistant seedlings in commercial trials
 - Ben Finlay
- Single gene resistance....
 - New sources required

New trial lines

• JHL 9918-2

[(Ben Tirran x EM B1834-164) x Ben Hope]

- Gall mite resistant
- Late season
- Tall upright habit
- Medium Brix, AsA > 200 mg/100ml
- 2015 yield 8.4 t/ha

• JHL 91129-1 [Ben

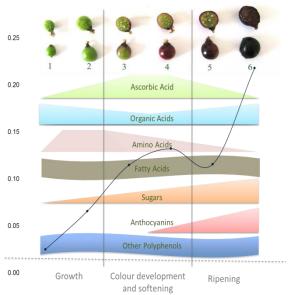
Dorain x EM B1836-120]

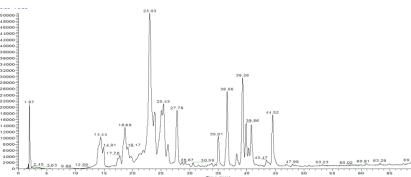
- Gall mite resistant
- Mid-season
- Compact growth
- Medium Brix, AsA > 240
 mg/100ml

- JHL 00-54-21

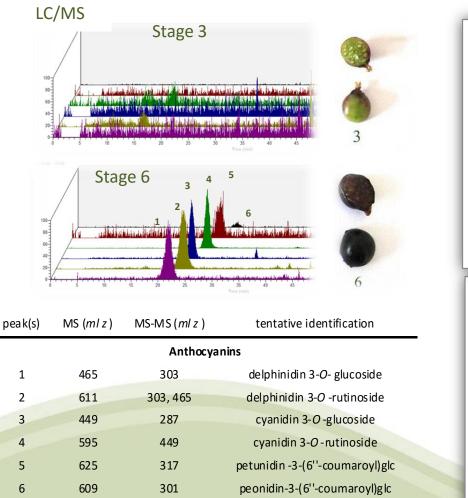
[Ben Hope x (Ben Alder x F6/3/39)]

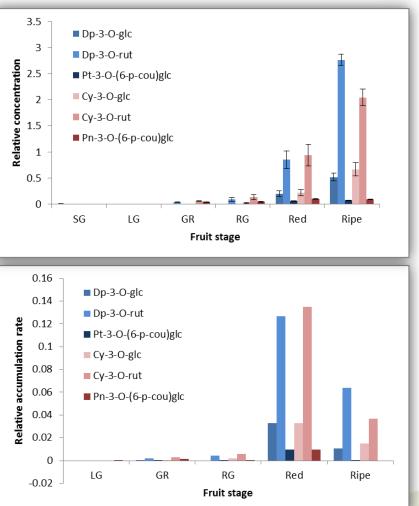
- Mid-season
- Compact habit, slightly spreading
- Medium-large fruit (ca. 1g)



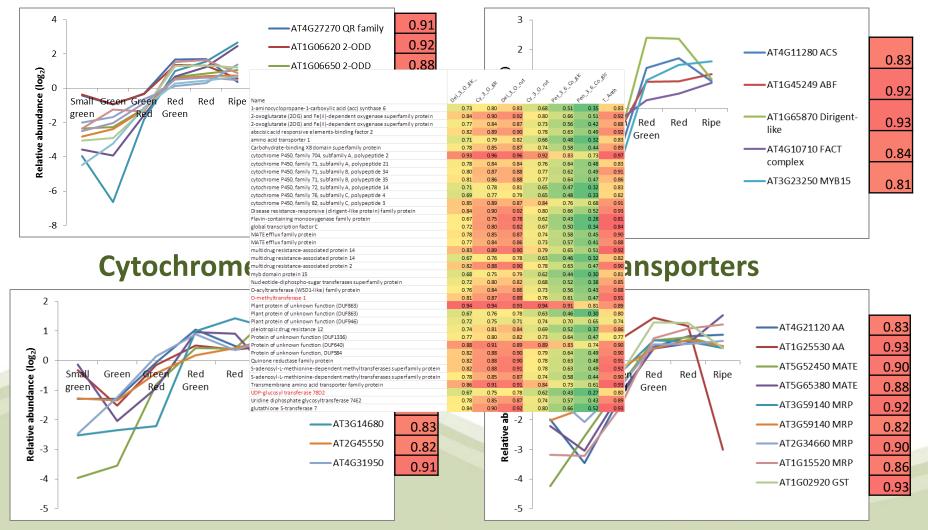


Anthocyanin content


- *Ca*. 400 seedlings p.a. from JHI breeding programme assessed for anthocyanin content
 - HPLC measurements for total and individual anthocyanins
 - Other quality traits eg AsA
- Preferential selection for high delphinidins vs. cyanidins
 - Initially for stability of colour, now potentially for healthrelated attributes
- High levels of anthocyanins in Ben Alder and offspring
 - Strong maternal effects in heritability
 - New material emerging with enhanced anthocyanin profiles



Anthocyanin accumulation



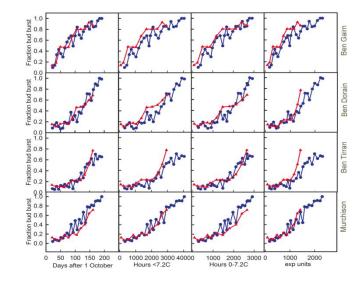
Candidate genes for anthocyanin accumulation in blackcurrant fruit

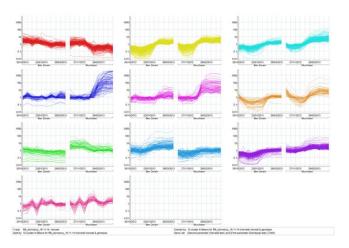
Structural genes

Regulatory genes

Pathway to new varieties with enhanced anthocyanin content

- Genes controlling anthocyanin content are being identified
- Genes/alleles specifically linked to high anthocyanins (delphinidins)
- Markers developed for selection of new highanthocyanin varieties (2018?)




Environmental resilience

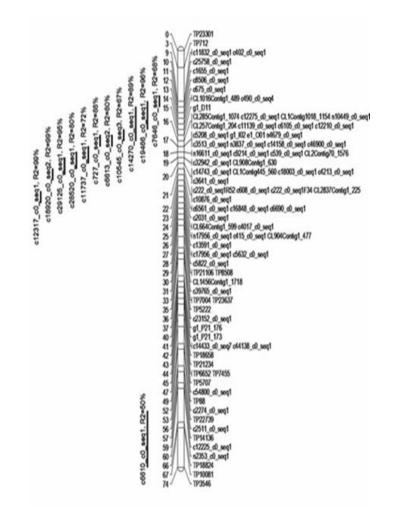
- Response to warmer winters in Europe
 - 2006-7, 2013-14, 2014-15, 2015-16
 - Economically significant effects
- Screening breeding lines for chill requirement
 - Cuttings taken throughout winter placed into a forcing environment
 - Differing response between varieties
- Chill modelling based on budbreak data for diverse varieties in progress
 - Models based simply on temperature thresholds show only limited alignment with field observations
 - UK Trade & Investment

t Innovate UK

- NZ collaboration
 - Joint mapping population
 - Mapping of traits

Tools and resources 1 - Germplasm

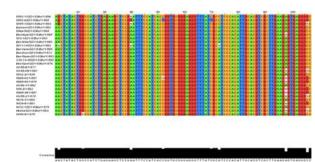
- Diverse range of breeding populations, varieties and species at JHI
 - > 13k individual genotypes
- Links to other germplasm collections within Europe and elsewhere
- *Ribes* accessions from the National Fruit Collections are being transferred to JHI



Tools and resources 2 - Genomics

Linkage maps developed

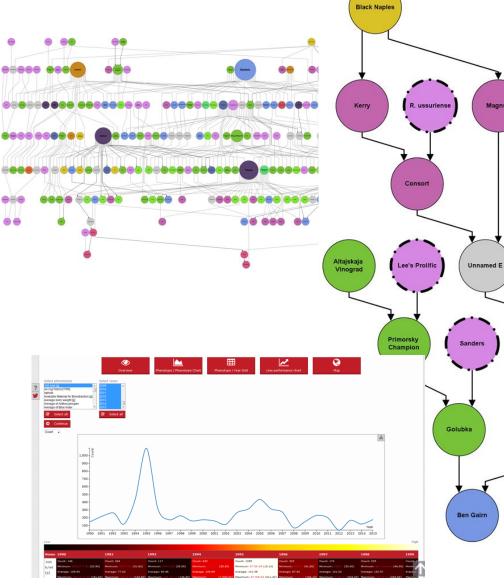
- First map in 2008
- Latest GbS map 2014
- Further GbS mapping of new mapping populations incl. NZ collaboration
- Trait locations
 - > 50 key metabolites incl. anthocyanins, AsA etc. mapped onto latest GbS map
- Markers for breeding
 - Gall mite marker 2010
 - Berry size markers under validation
 - Quality and developmental trait markers in progress



Blackcurrant Genome

- Genome sequencing of *Ribes nigrum* cv. Ben Finlay
 - Whole genome shotgun sequencing (WGS)
 - Mate-pair (MP) scaffolding sequencing
 - First reported genome sequence for blackcurrant
- Specialised browser developed at JHI for identifying genes linked to fruit quality and climate effects
 - Will be made available to other groups after publication

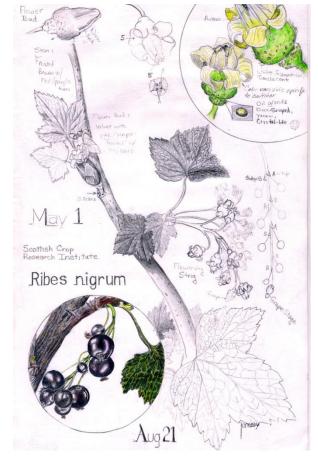
Changing positions



- 30 years ago
 - 2-3 commercial vars.
 - Ben Lomond, Baldwin
 - No commercially-funded breeding
 - Objectives almost entirely agronomic
 - Frost resistance
 - Yield
 - No fresh market for blackcurrants
 - Limited underpinning science
 - Mechanisms of frost resistance
 - No computers
 - Biggest UK problems frost damage at flowering time and gall mite

- 2016
 - 10 commercial vars.
 - Breeding funded commercially for over 25 years
 - Objectives related to quality plus agronomy
 - Growing fresh market for blackcurrants
 - Unrivalled scientific base underlying the breeding programme
 - Genomics and genetic analysis
 - Computer-based analyses
 - Biggest UK problems lack of winter chilling, gall mite
 - (frost damage increasing)

`Germinate' database


- Quality data from breeding programme
 - ca. 35 years
- Crossing and pedigree details
 ca. 40 years
- Trials data (agronomic and quality)
 - ca. 25 years
- New database under construction
 - Access will be public for some areas, restricted for others
 - Germinate'
 - Pedigree details `Helium'

Future directions

- Expansion of genetic base within breeding programmes
- Varieties linked to new products
 - Selection of seedlings with specific attributes linked to NPD
 - Specialised supply chain management to ensure quality
- Integrated crop management
 - Better resistance to pests and diseases
 - Reduced inputs
- Full exploitation of genomics platforms
 - Gene-based markers for quality and environmental traits
 - Improved breeding efficiency
 - Faster delivery of new varieties

Acknowledgements

James Hutton Institute

Sandra Gordon Dorota Jarret

Linzi Jorgensen Joanne Russell Pete Hedley Linda Milne **Rob Hancock** Paul Shaw

James Hutton Limited

Jonathan Snape Lesley Beaton

BioSS

BioSS Chris Hackett **Katharine Preedy**

University of Dundee

Lvn Jones

University of Reading Matt Ordidge University of Reading Nick Battey

New Zealand Alastair Currie Kathryn Wright

Funding

Breeding

LR Suntory (2015-) James Wickham LUCOZADE RIBENA SUNTORY Harriet Roberts **Rob Saunders** Jonathan Gilkes Paul Dockerty et al. (Thatchers)

GlaxoSmithKline (1990-2015)

Poland Stan Pluta

Bogusia Badek Margaret Korbin

UK Growers

Winterwood Farms Steve Taylor Alan Reeves

